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We study the pressure-driven transient motion of a periodic file of deformable liquid
drops through a cylindrical tube with circular cross-section, at vanishing Reynolds
number. The investigations are based on numerical solutions of the equations of Stokes
flow obtained by the boundary-integral method. It is assumed that the viscosity and
density of the drops are equal to those of the suspending fluid, and the interfaces have
constant tension. The mathematical formulation uses the periodic Green’s function of
the equations of Stokes flow in a domain that is bounded externally by a cylindrical
tube, which is computed by tabulation and interpolation. The surface of each drop is
discretized into quadratic triangular elements that form an unstructured interfacial
grid, and the tangential velocity of the grid-points is adjusted so that the mesh remains
regular for an extended but limited period of time. The results illustrate the nature of
drop motion and deformation, and thereby extend previous studies for axisymmetric
flow and small-drop small-deformation theories. It is found that when the capillary
number is sufficiently small, the drops start deforming from a spherical shape, and then
reach slowly evolving quasi-steady shapes. In all cases, the drops migrate radially
toward the centreline after an initial period of rapid deformation. The apparent
viscosity of the periodic suspension is expressed in terms of the effective pressure
gradient necessary to drive the flow at constant flow rate. For a fixed period of
separation, the apparent viscosity of a non-axisymmetric file is found to be higher than
that of an axisymmetric file. In the case of non-axisymmetric motion, the apparent
viscosity reaches a minimum at a certain ratio of the drop separation to tube radius.
Drops with large effective radii to tube radius ratios develop slipper shapes, similar to
those assumed by red blood cells in flow through capillaries, but only for capillary
numbers in excess of a critical value.

1. Introduction

Motions of liquid drops, capsules, and cells through narrow channels and tubes with
comparable dimensions arise in several natural, engineering, and physiological
contexts. On the engineering side, we have liquid droplets of a binary mixture
convected through the conduits of a porous medium in tertiary oil recovery (e.g.
Olbricht 1996). On the biophysical side, we have red blood cells moving through the
narrow branches of the capillary network in the microcirculation or through the
bronchial airways (e.g. Skalak, O> zkaya & Shalak 1989). In both cases, a desire to
understand the factors that affect the individual drop motion, and to quantify its
consequence on the global properties of the fluid, motivates a detailed investigation
under the magnifying glass of microhydrodynamics. Further objectives depend on the
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particular context ; in the case of blood flow, understanding the factors that influence
the red-blood-cell membrane tank-treading motion has been an important goal.

Two considerations complicate the analysis of flow in the presence of a drop or
capsule in its general form. First, the interfacial mobility allows a flow to be established
in the interior of the particle in response to the imposed flow due to an external
shearing motion or pressure drop; this necessitates the kinematic and dynamic
coupling of the interior and exterior flows taking into account the mechanical
properties of the interface. Secondly, the interfacial deformability allows a drop to
obtain a broad range of non-spherical transient shapes that must be computed
simultaneously along with the rest of the variables that characterize the flow. Examples
are the parachute and slipper-like shapes assumed by drops that are positioned off the
centreline of a cylindrical tube.

Revoking the interfacial mobility, the interfacial deformability, or both, yields
simplified systems involving rigid particles and spherical drops. Such systems have been
studied extensively, and the results have provided us with complementary insights into
the cardinal problem involving deformable drops. For example, Hyman & Skalak
(1972a, b) computed the flow due to an axisymmetric file of nearly spherical drops
moving along the centreline of a circular tube, regarding it as a model of blood flow.
For fixed drop radius, they considered the motion as a function of the tube radius, drop
separation, and viscosity ratio between the internal and ambient fluid. Their results
showed that the deformed shapes are similar to those assumed by red blood cells
moving through narrow glass tubes in �itro, or through blood vessels in �i�o. Recent
reviews and further results on the motion of drops and solid particles through tubes
were presented by Hirschfeld, Brenner & Falade (1984), Higdon & Muldowney (1995),
Sugihara-Seki (1996), Olbricht (1996), and Coulliette & Pozrikidis (1996). The recent
resurgence of interest is partly due to the availability of efficient numerical methods
that render extensive parametric investigations feasible, while requiring only moderate
computational facilities.

The more challenging problem involving highly deformable drops moving through
circular tubes has also been considered on several occasions. The theoretical analyses
and numerical simulations, however, have been conducted under some important
assumptions regarding the position or size of the suspended drops. Ho & Leal (1975)
conducted an investigation of the axisymmetric motion of large drops whose
equivalent diameter is comparable to the tube diameter ; Chi (1986) extended the
results to intermediate-sized drops. Martinez & Udell (1990) computed the axi-
symmetric motion of highly deformable drops in pressure-driven Stokes flow. Pozrikidis
(1992) considered the corresponding problem of gravity-driven for a periodic array of
drops. Borhan & Mao (1992) studied the effect of variable surface tension due to a
surfactant, and Bozzi et al. (1997) investigated the effect of fluid inertia. Barthe! s-Biesel
and coworkers (Leyrat-Maurin & Barthe! s-Biesel 1994; Queguiner & Barthe! s-Biesel
1997) studied the passage of liquid capsules through constrictions, cylindrical and
tapered tubes. Other studies are reviewed by Olbricht (1996). Several authors
investigated the motion and deformation of a drop above a plane wall, which
approximates the motion of a small drop moving near the surface of a cylindrical tube
(e.g. Kennedy, Pozrikidis & Skalak 1994).

In this paper, we present a computational study on the pressure-driven motion of a
periodic array of deformable liquid drops positioned off the centreline of an infinite
cylindrical tube with circular cross-section, under conditions of Stokes flow. The drops
are neutrally buoyant and the interfaces are devoid of surfactants and thus in a state
of uniform tension. This investigation generalizes previous studies by relaxing the



Motion of an array of drops through a cylindrical tube 3

assumptions regarding the drop size and position. The generalization, however, is not
complete, as it does not include the effect of the ratio of viscosities of the drop and
suspending fluid, λ. In developing the numerical method and carrying out the
numerical computations, we set λ¯ 1. The reason is that, at the present time, a
practical method of computing the motion for an extended period of time and with
adequate accuracy when λ has an arbitrary value, is not available. In spite of this
limitation, we are still left with an extensive parametric space whose exploration
requires substantial effort with respect to numerical development and computation.

The numerical simulations are based on the boundary-integral method for Stokes
flow. The formulation uses the periodic Green’s function of the equations of Stokes
flow in a domain that is bounded externally by a cylindrical tube. The properties and
computation of this Green’s function were discussed in a previous article (Coulliette &
Pozrikidis 1996). This formulation allows us to express the velocity field simply as an
integral over the surface of one drop in the periodic array. An alternative formulation
employs a simpler Green’s function, such as the Stokeslet, but the velocity field arises
indirectly by solving an integral equation of the first kind over the tube surface, as
explained by Higdon & Muldowney (1995). We find that if the Green’s function is
computed by tabulation and interpolation, as will be discussed in §3.1, the present
approach has significant advantages, and we advocate its use in more general problems
of drop motion in domains with arbitrary shapes, but only when the viscosity ratio is
equal to unity. For other values of the viscosity ratio, the alternative approach with the
simpler Green’s function is probably more efficient : the need to tabulate and
interpolate the stress tensor corresponding to the Green’s function puts our approach
at a disadvantage.

Much of the previous work on drop motion through a tube has been motivated by
applications in biomechanics. Liquid drops are crude models of red blood cells whose
motion is of paramount significance on the physiology of blood flow in the micro-
capillaries (e.g. Skalak et al. 1989). Although the interface of a red blood cell is
considerably more complex than that between two immiscible fluids, the common
feature of deformability gives partial reason to extracting information on the former
by studying the latter. Theoretical and computational studies of red blood cell motion
through capillaries are reviewed by Secomb & Hsu (1993). The most advanced of these
studies use the equations of lubrication flow to describe the motion of tightly fitting
cells in narrow capillaries.

The motion of drops through circular tubes represents one facet of the more general
and more physically relevant problem of motion through cylindrical tubes with
arbitrary cross-sections. Non-circular cylindrical shapes and axisymmetric but
undulated shapes arise in the physiological and engineering applications mentioned at
the beginning of this introduction. For example, the blood capillaries are not smooth
but bulge into the lumen to accommodate the cell nuclei of the endothelium, and
atherosclerosis causes blood vessels to develop constrictions. Similarly, the conduits of
a natural porous medium have random undulation. Tsai & Miksis (1994, 1997)
computed axisymmetric motions of drops through constricted capillaries. Unfo-
rtunately, the loss of axisymmetry in the boundary geometry introduces considerable
computational difficulties that require further developments in the implementation of
the numerical method. Non-circular geometries have been the subject of only a limited
number of theoretical studies in special asymptotic limits (Coulliette & Pozrikidis
1996).
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2. Mathematical formulation

We consider the generally unsteady motion of a periodic array of drops separated
by distance L through a tube with a circular cross-section of radius R, as depicted in
figure 1. The Reynolds number is assumed to be sufficiently small that the flow both
inside and outside the drop is governed by the equations of Stokes flow (e.g. Pozrikidis
1997). The drops consist of a Newtonian fluid and are bounded by interfaces with
infinitesimal thickness, negligible mass, and constant surface tension γ. The motion is
described in a Cartesian or polar cylindrical coordinate system with the x-axis along
the length of the tube.

As a preliminary, we introduce the Green’s functions of the Stokes equation for the
velocity and stress denoted, respectively, as GTP(x,x

!
,α) and TTP(x,x

!
,α), corres-

ponding to the geometry of the problem under consideration. Physically, u
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1}(8πµ)GTP
ij

(x,x
!
,α) b

j
is the velocity, and σ

ik
(x,α)¯ 1}(8π)¯TTP

ijk
(x,x

!
,α) b

j
is the

stress at the point x induced by a singly periodic array of point forces with uniform
strength b. The point forces are located in the interior, and are arranged along the axis,
of a circular tube of radius R, and are separated by the distance L. One of the point
forces is located at the point x

!
. This velocity field is required to vanish when either the

field point x, or the singularity point x
!

is placed at the cylindrical wall. The third
argument of the Green’s functions α is a dimensionless parameter, to be defined more
precisely in equations (2.4), determining the axial pressure drop over a period and thus
the axial flow rate.

The properties and computation of the Green’s functions are discussed by Coulliette
& Pozrikidis (1996). The numerical procedure involves solving an integral equation of
the first kind for the boundary traction induced by the point forces over one period of
the tube wall. The kernel of the integral equation is the Green’s function of triply
periodic flow, which is expressed in terms of rapidly converging Ewald sums. The
integral equation is solved by discretizing the wall into cylindrical elements and then
applying a standard collocation method. The numerical procedure is not specific to the
circular cross-section, but may also be used to obtain the Green’s function for a tube
with an arbitrary cross-section, although not for a tube whose cross-section varies with
axial position. The Green’s function for flow within a cylindrical tube, a portion of
which translates, may be computed by a similar, though slightly more involved,
method.

Combining now the boundary integral representations of the flow inside and outside
the drop, and requiring that the velocity remain continuous across the interface, we
obtain the integral equation
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where the point x
!

lies in the interface (e.g. Pozrikidis 1992). The integrals are
computed over the surface of one drop, denoted as D. The various symbols, variables,
and parameters are defined as follows: µ is the viscosity of the suspending fluid, λµ is
the viscosity of the drops, and PV denotes the principal value of the improper double-
layer integral. The density of the double-layer potential, ∆f, is the difference in the
modified traction exerted on either side of the interface; for neutrally buoyant drops
whose interfaces are devoid of surfactants, ∆f¯ 2γκ

m
n, where κ

m
is the mean
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F 1. Schematic illustration of pressure-driven flow of a file of deformable drops
through a circular tube.

curvature of the interface, γ is the surface tension, and n is the unit vector normal to
the interface pointing into the suspending fluid. Finally, uP¯U

cl
(1®σ#}R#) e

x
is the

velocity of pressure-driven Poiseuille flow, σ is the radial position in cylindrical polar
coordinates, R is the tube radius, U

cl
is the centreline velocity, and e

x
is the unit vector

along the x-axis.
All boundary conditions are satisfied by the boundary-integral representation

leading to equation (2.1). The condition of zero velocity at the tube surface, in
particular, is guaranteed by the choice of the Green’s function GTP. The use of any
other Green’s function would have resulted in integrals over the surface of the tube,
integrals over cross-sections of the tube, or both, adding to the complexity of the
integral equation and accompanying numerical method.

If the viscosity of the fluid inside the drop is equal to the viscosity of the ambient
fluid, λ¯ 1, the coefficient of the double-layer integral vanishes, and we obtain an
integral representation for the velocity,
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This expression is valid when the point x
!
is located in the interior, exterior, or at the

surface of a drop. In the remainder of this paper, it will be tacitly assumed that λ¯ 1.

2.1. Apparent �iscosity

The relative apparent viscosity of the suspension can be defined in terms of the negative
pressure drop ∆P over a length L, and the axial volumetric flow rate Q, as

µ
a

µ
¯

∆P

L
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In the absence of the drops, µ
a
}µ is equal to unity (e.g. Pozrikidis 1997, p. 184). More

generally, the pressure drop and axial flow rate can be computed in terms of surface
integrals over one drop using the formulae
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(2.4)

(Coulliette & Pozrikidis 1996). The first term on the right-hand side of each of these
equations corresponds to the unperturbed parabolic flow. The significance of the
dimensionless parameter α that first appears in (2.1), the arguments of the Green’s
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function, is now evident. When α¯ 0, the disturbance pressure drop due to the drops
vanishes, and the total pressure drop is equal to that of the unperturbed flow; when
α¯ 1, the disturbance flow rate due to the drops vanishes, and the axial flow rate is
equal to that of the unperturbed flow. Any intermediate choice is acceptable, but does
not admit a simple physical interpretation.

In the numerical simulations, we set α¯ 1, thus considering a flow that is pumped
at a constant flow rate. Fluctuations in the pressure drop reflect the transient
deformation of the drops. The transient motion for a constant-flow-rate flow can
be significantly different to that for a constant pressure-drop flow corresponding to
α¯ 0, and it is not clear how one can be deduced from the other. For example, the
start-up flow of a single fluid in a tube, subject to a constant flow rate, begins with a
plug-flow velocity profile, whereas the start-up flow subject to a constant pressure-drop
accelerates smoothly from zero velocity (e.g. Pozrikidis 1997). Assuming that the flow
rate and the pressure drop are properly matched, both profiles tend to the same steady
fully developed profile at long times. The steady motion for a constant-flow-rate flow
can be inferred from that for a constant pressure-drop flow and �ice �ersa provided that
the capillary numbers are properly matched.

The deformability of the drops can be expressed by the capillary number Ca, which
is the ratio of the typical magnitude of the viscous stresses and the surface tension.
Since the former scale with µV}R and the latter with γ}a, we define Ca¯µVa}γR ; V
is the mean velocity of the fluid given by V¯Q}πR#¯ "

#
U

cl
. Martinez & Udell (1990)

use the alternative capillary number µV}γ, which does not involve the drop size ; this
is an appropriate choice for axisymmetric motion. The present choice is more
appropriate for the purposes of our investigation, as the capillary number remains
meaningful in the limit of low concentrations where each drop finds itself immersed in
a virtually unbounded unidirectional shear flow and its ability to deform is in direct
proportion to its size.

3. Numerical procedure

The numerical procedure follows the standard steps of a boundary-element method
with certain new features. Some are specific to the particular problem under
consideration, and others are of a more general interest.

3.1. Tabulation and interpolation of the Green’s function

The numerical computation of the integral on the right-hand side of equation (2.2)
requires a multitude of evaluations of the Green’s function GTP. Each evaluation using
the boundary-element method developed by Coulliette & Pozrikidis (1996) consumes
a prohibitively large amount of time, approximately 6 s on a SUN SPARCstation 20
workstation with a 50 MHz processor running at 99% capacity.

To reduce this computation cost, we tabulate the polar cylindrical components of a
non-singular complementary component of the Green’s function, denoted as J(x,x

!
),

and then reconstruct them by interpolation. Similar procedures were followed by
Loewenberg & Hinch (1996) and Li, Charles & Pozrikidis (1996) for a doubly or triply
periodic flow. Specifically, we set J(x,x

!
)¯GTP(x,x

!
)®S(x,x

!
)S(x,xR

!
), where

S(x,x
!
), is the three-dimensional Stokeslet, x is the field point, x

!
is the singular point,

and xR

!
is the reflection of x

!
through the tube wall. Subtracting S(x,x

!
)®S(x,xR

!
)

from GTP(x,x
!
) yields smooth functions that are amenable to standard interpolation.

Other complementary Green’s functions were tested, but the chosen one produced the
most accurate results with the least amount of CPU time.
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In constructing the interpolation tables, we let the independent variables scan the
nodes of a uniform grid on the four-dimensional space of (x®x

!
,σ,σ

!
, } ®}

!
), where

x®x
!

varies in [0,L], σ, σ
!

vary in [0,R], and } ®}
!

varies in [0,π]. The polar
cylindrical components of the complementary Green’s function between grid points are
computed by quadra-variate linear interpolation, and the corresponding Cartesian
components are recovered by a simple orthogonal transformation. We used 20
interpolation points for x®x

!
, 10 points for σ and σ

!
, and 30 points for } ®}

!
. For

L}R¯ 2, this gives nearly equal intervals between interpolation points in each
variable. In this case, the average absolute error tested over a sample of 1000 randomly
chosen positions for x and x

!
was of the order of 10−$. Generating a grid of this size

requires computing the Green’s function at 60000 points of the aforementioned
parametric space, and consumes 81 h on the available computer facilities. This may
appear as an excessive computational cost, but the Green’s function is tabulated only
once for each periodic drop separation, and then fully exploited in the parametric
investigations. Storing a table of the aforementioned size in binary form requires only
4320 Kb of memory. The Green’s function tables are available on request.

The change in volume of a drop is a measure of the accuracy of the numerical
simulation. We found that the change in volume increases as the periodic separation
between the drops is reduced, even though, with a constant number of interpolation
points, the interpolation points with respect to x®x

!
becomes more dense. It appears

that the rapid variation of the velocity field overcompensates the reduction of
the interpolation error. With the exception of the computations presented in §7
for L}R¯ 1, the final volume change of the drops was less than 3% through a
simulation.

The interpolation error is compounded to the numerical error introduced by
computing the grid values of the Green’s function using the boundary-element method.
The maximum magnitude of the latter occurs as either the field point or the observation
point approaches the wall. The overall error is reduced substantially by forcing GTP to
vanish at the wall at the stage of interpolation. With this modification, the maximum
relative error in the computation GTP occurs at σ}R¯ 0.9, and is of the order of 2%.

3.2. Implementation of the boundary-integral method

To describe the initially spherical shape of a drop, we consider a regular octahedron
comprised of eight equilateral triangular sides, and then make a sequence of successive
divisions, each time dividing a triangular base into four descendant triangles and thus
quadrupling the number of sides. Each element is defined by six marker points, three
located at the vertices and three at the middle of its edges. Finally, the vertices and mid-
points of the edges are projected onto the sphere to yield an unstructured grid. The
number of elements N increases at the rate of N¯ 8¬4m, where m is an integer
indicating the level of discretization. The total number of vertices and mid-nodes is
2N2. A  program that performs this discretization and generates a
connectivity table is available on request. The connectivity table gives, among other
quantities, the numbers of the elements that host a particular node, and the numbers
of the nodes that define a particular element.

The shape of the elements is described in a parametric manner in terms of two local
surface coordinates (ξ, η) that map the position vector of a point in the interior of an
element to a point within a right-angled triangle in the (ξ, η) plane; the corresponding
mapping functions are given by Pozrikidis (1998). The right-angle of the parameter
triangle is located at the origin of the parameter plane, and the lengths of its two equal
sides are equal to unity. The normal vector and mean curvature over the triangle are



8 C. Coulliette and C. Pozrikidis

computed using this parametric representation and standard formulae of differential
geometry (e.g. Pozrikidis 1997, pp. 16, 21).

The unit normal vector at a particular marker point has a multitude of values
computed from the parametric representation of the elements that share the point. For
example, the unit normal vector at the mid-points has two values. The numerical error
is reduced drastically by setting the normal vector at each point equal to an unweighted
average of all pertinent values, and then computing it in the interior of an element by
quadratic interpolation with respect to the local surface coordinates.

The single-layer integral over the interfacial elements is computed using a triangle
integration rule (e.g. Pozrikidis 1998). The singularity is ameliorated by expressing the
variables of integration in plane polar coordinates with the origin at the singular point.

The interface is symmetric with respect to the plane that passes through the drop
centroid and the tube axis. Thus, even though all nodes must be stored or reproduced
by reflection during the evaluation of the interfacial integrals, the velocity at only about
half of the nodes is necessary. To ensure the flawless performance of the numerical
method, however, the symmetry was exploited only in a limited number of cases. The
round-off error caused the nodes that lie in the plane of symmetry to be lifted by a small
distance by the end of a simulation, thereby suggesting that the symmetric motion is
stable.

3.3. Ad�ancing the interface

After the interfacial velocity has been computed at the marker points, the position of
the marker points is advanced using a standard time-integration method, as will be
described later in this section. If the velocity of the marker points is set equal to the
velocity of the fluid u given in equation (2.2), the marker points tend to migrate rapidly
toward the rear of the drop, causing numerical instabilities and a dilapidation of
the interface. One way of preventing this catastrophe, is to replace the tangential
component of the fluid velocity, n¬u¬n, with a multiple of the tangential component
of the velocity of the volume-centroid of the drop, f(σ)n¬U¬n ; the volume-centroid
x
c
is computed in terms of a surface integral over the interface, x

c
¯ 1}(2V ) !nx[xdS,

where V is the drop volume. The centroid velocity U arises by backward numerical
differentiation. The dimensionless modulating function f(σ) reduces the magnitude of
the tangential velocity near the tube, and increases it near the tube centreline, in a
manner that is consistent with the velocity profile of the unperturbed Poiseuille flow.
A good choice for f(σ) is f(σ)¯ (R#®σ#)}(R#®σ#

c
), where σ

c
is the radial position

of the drop centroid; an even better choice is f(σ)¯ (R#®(ζσ®ζσ
c
σ

c
)#)}(R#®σ#

c
)

where ζ is an empirical constant. Numerical experimentation suggested setting
ζ¯ [ru[nr

max
}(U

cl
(1®σ#

c!
}R#))]#, where σ

c!
is the initial radial position of the drop

centroid. This expression adjusts the magnitude of the tangential component of the
marker-point velocity so that it is less than that of the parabolic flow near the quasi-
steady state. A similar but more involved method was used by Loewenberg & Hinch
(1996) in their study of multiple-drop motion in a periodic flow. A more sophisticated
method was developed by Zinchenko, Rother & Davis (1997).

The interface is advanced by integrating the system of ordinary different equations
that determines the motion of the marker points, using the adaptive Runge–
Kutta–Fehlberg method RFK23 (e.g. Pozrikidis 1998), which requires three velocity
evaluations for each marker point per timestep. The additional evaluation required in
comparison with the standard second-order Runge–Kutta method allows the interface
to evolve slowly during the most interesting phases of the deformation, and rapidly
during the less interesting phases of the deformation.

Using the procedure described in §3.1 for the tabulation and interpolation of
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F 2. Comparison of results obtained using - - -, a boundary-integral method for axisymmetric
flow, and ——, the present method for three-dimensional flow, for drop separation L}R¯ 3, drop
radius a}R¯ 0.5, and capillary number Ca¯ 0.10; (a) quasi-steady shapes after an evolution time
Vt}R¯ 1.5, where V is the mean velocity of the unperturbed flow; (b) axial position of the drop
centroid.

the Green’s function, the adaptive time-stepping method, and the aforementioned
procedure to control the quality of the grid, we obtain an overall successful numerical
method. For small drops, 128 elements are sufficient to resolve the interface shape,
whereas for large drops, 512 elements are necessary; 39.6 s per timestep for 128
elements and 9.24 min per timestep for 512 elements are required on the available
computer facilities. In all studies discussed in the following sections, 60–100 timesteps
were sufficient for the drops to reach a quasi-steady state, or for the motion to proceed
up to a time of Vt}R¯ 1.5. For a drop with 512 elements, running the executable code
requires 16–236 Kb of memory, including the storage of the Green’s function.
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4. Parametric investigation and code validation

Several non-dimensional parameters affect the motion of the drops, including the
reduced effective drop radius a}R, the capillary number Ca¯µVa}γR, the reduced
initial radial position of the drop centroid σ

c!
}R, and the reduced separation L}R.

To facilitate the presentation of the results, we consider separately small drops with
a}R! 0.5, and large drops with a}R" 0.5. The parameters studied in each category
are restricted to those that have the most significant influence. In the case of small
drops, these are the reduced effective drop radius a}R and the capillary number Ca. In
the case of large drops, these are the reduced initial radial position of the centroid
σ
c!
}R and the capillary number Ca. In determining the effect of periodic separation,

we simultaneously investigate the combined effect of initial radial position and periodic
separation.

Martinez & Udell (1990) and Pozrikidis (1992) computed axisymmetric motions of
deformable drops through a cylindrical tube. The former considered the steady
pressure-driven motion of one drop, and the latter considered the transient buoyancy-
driven motion of a periodic file of drops. We extended the method of Pozrikidis (1992)
to make it applicable to pressure-driven flow, and thus obtained a computer code that
was used to validate the present results for three-dimensional flow.

In figure 2, we compare results computed by the method for axisymmetric flow,
and those computed by the present method for three-dimensional flow, for a periodic
file of drops with separation L}R¯ 3, drop radius a}R¯ 0.5, and capillary number
Ca¯ 0.10. In figure 2(a), we present the shape of a quasi-steady drop, and in figure 2(b)
we present the transient axial position of the centroid of one drop in the array. The
results of the two computations are in excellent agreement. Note, in particular, that the
drop shape has a higher curvature at the front than at the back, which is consistent with
previous theoretical predictions and laboratory observations (Goldsmith & Mason
1963; Hyman & Skalak 1972b ; Ho & Leal 1975). The motion of the surrounding fluid
was first analysed by Hyman & Skalak (1972a) who found that when the drop spacing
is greater than about one tube diameter, a bolus of suspending fluid is trapped between
each pair of successive drops. This behaviour is reproduced by our numerical method.

5. Small drops

Consider a particular drop belonging to a file of drops, moving off the tube
centreline. If the drop is sufficiently small, the parabolicity of the Poiseuille-flow
velocity profile may be neglected, and the incident flow may be approximated with a
single shear flow having an appropriate shear rate. The effect of the tube may also be
neglected to a leading-order approximation. Taylor (1934) showed that when the
capillary number is sufficiently small, a drop in steady simple shear flow with velocity
u¯G(y®y

c
) e

x
, where G is the constant shear rate, deforms into a ellipsoid whose

aspect ratio and inclination relative to the direction of flow are functions of the
capillary number Ca

SSF
¯µGa}γ and of the viscosity ratio λ.

Using the shear rate of the Poiseuille flow at the centroid of the drop, G
c
¯ ¥uP

x
}¥σ,

we define the local capillary number

Ca
l
¯

µrG
c
ra

γ
¯

2µaU
cl

σ
c

γR#

¯ 4
σ
c

R
Ca, (5.1)

where Ca¯µVa}γR. The local capillary number permits comparisons of drop
behaviours in simple shear flow and pressure-driven tube flow.
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F 3. (a) Mid-plane profiles of quasi-steady drops in a period file with L}R¯ 2, initial radial
position σ

c!
}R¯ 0.50, a}R¯ 0.1 and 0.4, and Ca¯ 0.10, compared with the profile of a drop in

simple shear flow with capillary number Ca
SSF

equal to the local capillary number Ca
l
¯ 0.2. (b) The

corresponding transient deformation parameter. ——, a}R¯ 0.1; - - -, 0.4 ; –[–, simple shear flow.

In figure 3(a), we present the steady profile of a drop in simple shear flow in the plane
of symmetry that is perpendicular to the vorticity vector of the unperturbed flow
for Ca

SSF
¯ 0.20, along with quasi-steady profiles of drops with a}R¯ 0.1 and

0.4 in pressure-driven tube flow, for σ
c
}R¯ 0.5 and Ca¯ 0.10 corresponding to

Ca
l
¯Ca

SSF
¯ 0.20. The tube centreline is located beneath the depicted profiles. The

drop with radius a}R¯ 0.1 is nearly identical to that of a drop in simple shear flow,
but the drop with a}R¯ 0.4 is significantly more elongated, and has an egg-like shape.
The change in shape as the drop size is increased is due to the more prominent effect
of the variation in the shear rate with respect to the radial distance, with high values
near the tube wall and low values near the centreline, but also to the presence of the
wall. Larger drops deform more severely at the region adjacent to the wall than near
the centreline.

The magnitude of the drop deformation can be described in terms of the
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deformation parameter D¯ (c®b)}(cb) ; c and b are the maximum and minimum
dimensions of the drop in the azimuthal plane passing through the drop centroid.
Figure 3(b) illustrates the deformation of a drop in a simple shear flow, compared to
that of drops with radii a}R¯ 0.1 and 0.4 in pressure-driven tube flow, corresponding
to figure 3(a). The asymptotic deformation of a drop in simple shear flow is nearly
identical to that of the small drop in Poiseuille flow. As observed earlier, the
deformation of the large drop is significantly more pronounced. Overall, these results
indicate that it is safe to use the approximation of locally simple shear flow when a}R
is as high as 0.10 and perhaps even somewhat higher.

5.1. Migration and quasi-steady shapes

Next, we consider the radial drop migration and the establishment of quasi-steady
shapes. Two factors influence the drop deformation and thus migration in tube flow,
including the parabolicity of the Poiseuille velocity profile, and the presence of the wall.

The first factor was considered in detail by Chan & Leal (1979), who derived the
following expression for the trajectory of a drop in infinite parabolic flow:

σ#
c
®σ#

c!

2R#

01®
2λ

23λ

a#

R#
1 ln

σ
c!

σ
c

¯®(x
c
®x

c!
)
U

cl
a$µ

R%γ
q(λ), (5.2)

where

q(λ)¯
2λ

(1λ)#(23λ) 9 3

14

1619λ

23λ
(2λ#λ®1)

1011λ

140
(3λ#®λ8): . (5.3)

Numerical evaluation gives q(λ¯ 1)¯ *

#!
.

The influence of the wall can be estimated using the results of the small-deformation
theory for flow past a drop above a plane wall. Following the analysis of Shapira &
Haber (1990) and the discussion of Kennedy et al. (1994), we argue that the rate of
migration of a drop that is located far from a wall, R®σ

c
( a, and far from the tube

centreline, σ
c
( a, is given by

dσ
c

dt
¯®rG

c
r

a$

(R®σ
c
)#

g(λ)D
T
, (5.4)

where D
T

is the Taylor deformation parameter of a drop that is suspended in infinite
simple shear flow at capillary number Ca

SSF
¯Ca

l
. Chan & Leal (1979) derived the

expression

g(λ)¯
3

280

54λ#97λ54

(1λ)#
. (5.5)

Under the aforementioned restrictions on the drop size, shape, and position, we expect
that equation (5.4) will approximately describe the radial migration of a drop in the
presence of a tube wall. From figure 2, we note that the longitudinal position of the
drop centroid is a nearly linear function of time, so we may substitute the relation
dx

c
¯ ηVdt into equation (5.4), where η is the observed slope, and evaluate the shear

rate at the drop centroid in terms of the radial position of the centroid, to find

dσ
c

dx
c

¯®
4σ

c

ηR#

a$

(R®σ
c
)#

g(λ)D
T
. (5.6)

Using the boundary-integral method, we computed the deformation parameter D for
a periodic file of drops in a tube, applied a least-squares regression to find η, and
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F 4. Trajectory of drop centre with initial radial position σ
c!
}R¯ 0.75, radius a}R¯ 0.1, and

Ca¯ 0.10, predicted by the parabolic-flow theory of Chan & Leal (1979) corresponding to the solid
line, the present numerical method corresponding to the dashed line, and the small-deformation wall-
migration theory discussed in the text corresponding to the dash-dot line.

integrated the ordinary differential equation (5.6) using the fourth-order Runge–Kutta
method, with D

T
on the right-hand side replaced by D.

In figure 4, we present the trajectory of a drop centroid computed from equations
(5.2) and (5.6), and the actual trajectory arising from our numerical method for initial
drop position σ

c!
}R¯ 0.75, drop radius a}R¯ 0.1, and Ca¯ 0.10. For λ¯ 1, the

theory of Chan & Leal (1979) predicts migration toward the wall, whereas the small-
deformation theory resulting in equation (5.6) predicts rapid migration away from the
wall. Our numerical results fall between these two extremes. Considering the underlying
assumptions, equation (5.6) offers reasonable predictions. Unfortunately, we are not
aware of any experimental data for flow in a tube with λ¯ 1 that can be used to
confirm our predictions. Nonetheless, it is worth noting that the analysis of Chan &
Leal (1979) predicts lower migration rates than those observed in the experiments of
Goldsmith & Mason (1963) for λ' 1, and this provides us with a partial explanation
for the discrepancies in figure 4.

Since the drop migration velocity is small, it is appropriate to characterize the
motion in terms of two timescales : the time it takes for a drop to deform from an initial
spherical shape to a nearly steady shape, T

Def
, and the time it takes for a drop to

migrate a radial distance comparable to the drop radius, T
Mig

. Kennedy et al. (1994)
showed that T

Def
may be estimated from the results of the transient small-deformation

theories for unbounded shear flow, and the timescale T
Mig

may be estimated from
equation (5.4). Following their arguments, we set

T
Def

¯
λCa

rG
c
r
,

1

rG
c
r g(λ)D 0R®σ

c

a 1$, (5.7)

and define

τ3
T
Def

T
Mig

¯Caλ g(λ)D 0 a

R®σ
c

1$. (5.8)

When Ca' 1 and R®σ
c
( a, equation (5.8) gives τ' 1; the drops reach quasi-steady
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F 5. Radial position of the drop centroid, and transient profiles of a drop at Vt}R¯ 0, 0.3, 0.6,
0.9, 1.2 and 1.5 for L}R¯ 2, σ

!c
}R¯ 0.5, and reduced drop radius (a) a}R¯ 0.1, (b) 0.4. ——,

Ca¯ 0.050; - - -, 0.075; –[–, 0.100.

shapes whereupon the deformation is the exclusive cause of the inward migration. In
all cases to be discussed in the remainder of this subsection, these two conditions are
met. In the computations, the drops were considered to have obtained quasi-steady
shapes when (u®U )[n}V is of the order of 10−#.

To illustrate the effect of the capillary number, on the left-hand side of figure 5 we
plot the radial position of the drop centroid, and on the right-hand side we plot the
corresponding transient shapes at Vt}R¯ 0, 0.3, 0.6, 0.9, 1.2 and 1.5, for L}R¯ 2,
σ
c!
}R¯ 0.5, Ca¯ 0.05, 0.075 and 0.1, and a}R¯ 0.1 and 0.4. In both cases, a}R¯ 0.1

and 0.4, after an initial transient period, the drops migrate toward the centreline.
For the smaller drops with a}R¯ 0.1, there is an initial start-up period during which



Motion of an array of drops through a cylindrical tube 15

la
l

1.001

1.000
0 0.5 1.0 1.5

1.15

1.10

1.05

1.00
0 0.5 1.0 1.5

(a)

(b)

Vt/R

la
l

F 6. Relative apparent viscosity of the suspension for L}R¯ 2, σ
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drop radius (a) a}R¯ 0.1, (b) 0.4. ——, Ca¯ 0.050; - - -, 0.075; –[–, 0.100.

the centroids appear to move slightly away from the centreline. When the rate of initial
deformation lessens, the drops begin migrating towards the centreline. However, the
magnitude of the radial displacement is very small, and it is possible that the wall-
bound motion is merely a numerical artifact. There are no visible differences in shapes
between Vt}R¯ 0.3 and 0.6, confirming that the drops have indeed reached quasi-
steady shapes at an early time.

In contrast, there are significant differences in the shapes of the drops with a}R¯ 0.4
at Vt}R¯ 0.3 and 0.6, as shown in figure 5(b). The shapes become quasi-steady by
the time Vt}R¯ 0.9. There are still slow changes in shape after that time, but they are
due to the radial migration and the resultant tendency of the drops to reach the
centreline. Since the deformation of an axisymmetric drop is less than that of a
deformed drop located off the centreline, it follows that maximum deformation should
occur after a finite evolution time. Indeed, the deformation of parameter reaches
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F 7. Velocity vectors interior and exterior to a quasi-steady drop in the plane passing through
the drop centroid and the tube axis, in a frame of reference translating axially with the drop centroid,
for L}R¯ 2, σ

!c
}R¯ 0, capillary number Ca¯ 0.1, and reduced drop radius (a) a}R¯ 0.1, (b) 0.4.

a maximum, and then it decreases linearly as the drop exhibits significant radial
migration.

5.2. Apparent �iscosity

In figure 6 we plot the relative apparent viscosity for L}R¯ 2, σ
c!
}R¯ 0.5, a}R¯ 0.1,

0.4, and for three values of the capillary number. If both cases a}R¯ 0.1, 0.4, the
apparent viscosity shows a rapid initial increase, as the drops are adjusting to the
environment, and then it changes at a lower rate. For a}R¯ 0.4, the apparent viscosity
reaches a maximum, and then it shows a linear decline caused by the inward migration
of the drops towards the centreline. Thus, minimum energy dissipation occurs when
the drops move along the centreline, and the apparent viscosity is a monotonic
function of the distance from the centreline.

Gaehtgens (1987) reported that the off-centre positioning of red blood cell files in
horizontal tubes, caused by sedimentation, significantly increases the apparent viscosity
of the blood. These experimental observations agree with the linear decrease in figure
6(b) at long times. Sugihara-Seki & Skalak (1988) computed the relative apparent
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viscosity of a two-dimensional suspension containing a single file of freely suspended
rigid circular cylinders of radius a}H¯ 0.4 and separation L}H¯ 2; H is the channel
half-width and a is the equivalent cylinder radius. They also found that the apparent
viscosity increases as the radial position of the file is made larger. It is important to
note, however, that the periodic array is not necessarily stable in its axisymmetric state,
that is, an energetically favourable state is not necessarily stable to disturbances that
displace the drops in a subharmonic way.

5.3. Flow field

In figure 7, we present velocity vector fields in the azimuthal plane passing through the
drop centroid for L}R¯ 2, σ

c!
}R¯ 0.5, Ca¯ 0.1, and a}R¯ 0.1 and 0.4, in a

reference frame moving with the drop centroids. In both cases, the fluid near the tube
centreline moves faster than the drops, whereas the fluid near the tube wall moves
slower than the drops. A counterclockwise eddy develops in the drop interiors. The
streamlines in the mid-plane are not necessarily closed, but form spiral patterns
reflecting the three-dimensional structure of the flow. The centre of the eddy inside the
drop with a}R¯ 0.1 nearly coincides with the drop centroid, but the centre of the eddy
for a}R¯ 0.4 is located closer to the wall.

In the intervening region between the drops with a}R¯ 0.4 shown in figure 7(b),
there is a point where both components of the fluid velocity nearly vanish, indicating
that a bolus of fluid has been established and travels with the drops. A similar bolus
was identified in previous studies of axisymmetric flow (Hyman & Skalak 1972a) and
was also observed in intercellular plasma motion between red blood cells travelling
through narrow capillary tubes (Gaehtgens, Duhrssen & Albrecht 1980). There is a
large variation in the magnitude of the axial velocity near the edge of the bolus close to
the wall. In contrast, the axial component of the velocity varies in a smooth parabolic
manner between the small drops shown in figure 7(a), and this indicates that a
travelling bolus does not develop. For a bolus to form, the spacing between the drops
must be greater than about one tube diameter, and the effective radius of the drops
must be of the same order as the tube radius. When these conditions are not met, the
streamlines join smoothly at the rear of a travelling drop.

6. Large drops

When the drops are sufficiently large, the undeformed interfaces intersect the tube
centreline, and the capillary number is sufficiently high, an evolving dimple may
develop at the rear of the drops, and the drops may assume a slipper shape, as shown
in figure 8 for drops with L}R¯ 2, σ

c!
}R¯ 0.05, a}R¯ 0.7, Ca¯ 0.4, at Vt}R¯ 1.5.

Figure 8(a) illustrates the drop surface represented by a grid of 512 quadratic elements,
each subdivided into four planar elements for better display; figure 8(b) shows the
same file with the surfaces displayed using Gouraud shading. A similar slipper shape
has been observed in numerous experimental studies of red-blood-cell flow.

In figure 9(a), we present microphotographs of red blood cells circulating in the
mesentery of a dog (after Fung 1969), and in figure 9(b) we present microphotographs
of red blood cells travelling in a single file through a 6.2 µm capillary tube after
Gaehtgens et al. (1980). There is a general similarity between the drop shapes formed
by the periodic file shown in figure 8 and those of the red blood cells displayed in the
photographs. It should be pointed out, however, that the drops develop a slipper-like
shape only when the capillary number is in excess of the critical value, whereas the red
blood cells appear to do so always, as long as the tube radius is sufficiently small.
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(a)

(b)

F 8. Slipper-shaped drops at Vt}R¯ 1.5 for L}R¯ 2, σ
!c
}R¯ 0.05, a}R¯ 0.7, and Ca¯ 0.4,

showing the drop surface displayed with (a) a grid of 512 quadratic elements each subdivided into
four planar elements, (b) Gouraud shading.

Conditions under which the drops develop dimples and then maintain them could not
be found; instead, the ambient fluid keeps invading the drop interior, possibly reaching
their fronts ; our computations became unreliable well before that point owing to the
inadequate spatial resolution. Thus, there is an important difference between red blood
cells and liquid drops. Owing to the incompressibility of the interfaces, the red blood
cells are able to sustain the slipper shape, whereas the drops deform in an unrestricted
manner possibly leading to break-up (Pozrikidis 1992; Olbricht & Kung 1992; Tsai &
Miksis 1994).

In figure 10, we compare profiles of drops at time Vt}R¯ 1.5, for L}R¯ 2, a}R¯
0.7, Ca¯ 0.40, and σ

c!
}R¯ 0, 0.05, 0.10 and 0.15. The shapes of the rear portions of

the interfaces are notably sensitive to the initial radial position. In particular, as σ
c!
}R
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(a)

(b)

F 9. (a) Microphotographs of red blood cells circulating in the mesentery of a dog (Fung 1969) ;
(b) microphotographs of red blood cells travelling in single file through a 6.2 µm capillary tube
(Gaehtgens et al. 1980).

is increased, the near surfaces become more elongated and the dimple becomes less
pronounced, eventually disappearing at a critical off-centre distance. Thus, a dimple
will develop only if the drops are sufficiently close to the centreline and the capillary
number is sufficiently high. For σ

c!
}R¯ 0.15, a small ripple is observable at the lower

lateral surface nearest the tube wall, owing to the numerical error associated with the
element skewness.

In figure 11, we illustrate the radial migration of the drops shown in figure 10.
Initially, all drops are placed below the centreline. The centroids of all drops start
moving toward the wall as the drop is adjusting to its environment, but then they pause
and begin migrating towards the centreline. As σ

c!
}R is increased, the initial period

during which the drop centroids move away from the centreline becomes longer. For
example, when σ

c!
}R¯ 0.10 or 0.15, the drops start migrating toward the centreline

when Vt}R¯ 0.85 or 1.43. This observation suggests a criterion for computing the
critical capillary number below which the drops are able to reach a quasi-steady shape
without developing a dimple. A capillary number may be considered to be less than the
critical value when the drops establish a nearly constant migration velocity toward the
centreline after a finite evolution time. Our results confirm that the critical capillary
number is a function of the initial radial position of the drops. We found empirically
that Ca

cr
¯ 0.25R}(Rσ

c!
). Since the capillary number was defined to be proportional

to a}R, a drop is less likely to reach a quasi-steady state when it is large, or when it is
initially positioned far from the centreline.
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F 10. Comparison of drop shapes at approximately Vt}R¯ 1.5 for L}R¯ 2, a}R¯ 0.7,
Ca¯ 0.40, and initial drop position σ
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F 11. Radial position of the drop centroid for the cases displayed in figure 10.

6.1. Apparent �iscosity

In figure 12, we present the relative apparent viscosity of the suspension depicted in
figure 10. As the initial radial position of the drop centroid is increased, the apparent
viscosity increases in a manner that is similar to that discussed previously for small
drops. A new feature is that none of the apparent viscosity curves presented in figure
12 tend to become linear at long times, as was noted for small drops with a}R¯ 0.1
or 0.4. This difference is probably due to the large magnitude of the capillary number
for large drops. For all cases presented in figure 12, the ratio of timescales τ discussed
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F 12. Relative apparent viscosity of the suspension for the cases displayed in figure 10.

in the preceding section is significantly larger than unity. The viscous-induced stresses
caused by the pressure-driven flow are large in comparison to surface tension, and the
deformation continues without an apparent approach to a quasi-steady shape.

We performed a set of computations similar to those corresponding to figure 12 for
smaller capillary numbers. A dimple did not form in the near of the drop, and the
apparent viscosity curves did tend to become a linear function of time, at long times.

6.2. Flow field

It is revealing to examine the structure of the flow field over the interfaces. In figure 13
we present interfacial streamlines over slowly evolving drops at Vt}R¯ 1.5, for
L}R¯ 2, a}R¯ 0.7, Ca¯ 0.40, and σ

c!
}R¯ 0.05 and 0.10, in a frame of reference

moving with the drop centroid. The interfacial streamlines were computed from the
tangential component of the velocity, neglecting the normal motion. The tube wall is
moving backward relative to the slowly evolving drops. There is a stagnation point at
the leading tip, and an open dividing streamline at the front surface of each drop; the
latter extends towards the rear of the interface along the part that is adjacent to the wall
and then closes at a rear stagnation point. At the front upper side of the drops, there
is a clear distinction between the back-flow of suspending fluid and the bolus of fluid
between the drops; at the front lower side where the dividing streamline turns back, the
distinction is not as clear. The non-axisymmetry of the file of drops shown in figure
13(b) is more pronounced than that shown in figure 13(a). Correspondingly, the rear
stagnation point is further away from the centre of the dimple. Martinez & Udell
(1990) observed a similar flow pattern over a solitary axisymmetric drop, including a
circular dividing surface streamline that completely encircles the front of the drop.

In figure 14, we plot the velocity vector field corresponding to figure 13(a). The
slower moving fluid near the tube wall transmits strong shear stresses across the
interface and causes the onset of a toroidal eddy in the interior. The flow toward the
rear of the drop occurs predominantly in a shell adjacent to the interface, whereas the
compensating flow towards the front occurs through a jet directed along the centreline.
This interior flow pattern is similar to that described by Martinez & Udell (1990) for
a solitary axisymmetric drop.
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(a)

(b)

F 13. Interfacial streamlines at Vt}R¯ 1.5 for L}R¯ 2, a}R¯ 0.7 and Ca¯ 0.40, and
initial drop position (a) σ

!c
}R¯ 0.05, (b) 0.10.
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F 14. Velocity vectors interior and exterior to a drop in the plane passing through the
drop centroid and the tube axis, in a frame of reference translating axially with the centroid of the drop
at Vt}R¯ 1.5 for L}R¯ 2, a}R¯ 0.7, Ca¯ 0.40 and σ

!c
}R¯ 0.05.

7. Effect of drop separation

As a last topic, we examine the effect of reduced drop separation L}R on the shape
of quasi-steady drops, fixing the value of the capillary number. In figure 15(a, b), we
present shapes for a}R¯ 0.4, σ

c!
}R¯ 0.5, Ca¯ 0.05, and L}R¯ 2.0, 2.5 and 3.0. In

all cases, the drop centres are located sufficiently far from the tube centreline so that
the interfaces do not develop dimples regardless of the magnitude of the capillary
number. There are noticeable but small differences in the shapes of the drops with
L}R¯ 2 and L}R¯ 2.5, and more significant differences between the shapes of drops
with L}R¯ 2.5 and L}R¯ 3.0. The deformation parameter for the three cases shown
are, respectively, equal to 0.136, 0.158 and 0.360. Since the disturbance flow due to a
drop effectively vanishes a few tube radii upstream and downstream from its centre, the
drops for L}R¯ 3 are affected only mildly by their neighbours, and we expect that a
further increase in L}R will cause only small changes. Unfortunately, our inability to
compute the Green’s function for large separations with sufficient accuracy prevented
us from confirming this assertion.

The drop separation has a significant influence on the apparent viscosity of the
suspension. In figure 16, we present the time evolution of the apparent viscosity for
a}R¯ 0.4, L}R¯ 2.0, 2.5 and 3.0, and σ

c!
}R¯ 0, 0.1, 0.25 and 0.5. For axisymmetric

drops, described in figure 16(a), the apparent viscosity decreases as the periodic
separation becomes larger. In contrast, figures 16(b)–16(d ) show a non-monotonic
dependence for non-axisymmetric motion. After the quasi-steady state has been
established, the arrangement has a minimum apparent viscosity when L}R¯ 2.5, and
this value is insensitive to the initial radial position.

To resolve the physical reason of this non-monotonic behaviour, we used a
numerical method similar to that described by Zhou & Pozrikidis (1994) to compute
the apparent viscosity of a period file of two-dimensional drops in a channel of half
width equal to H, for reduced equivalent drop radius a}H¯ 0.4, initial drop distance
from the centreline y

c
}H¯ 0.5, Ca¯ 0.05, and separation L}H¯ 2.0, 2.5 and 3.0. We

found that the apparent viscosity decreases monotonically with the periodic separation.
A similar monotonic behaviour was reported by Sugihara-Seki & Skalak (1988) for an
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(a) (b)

F 15. Quasi-steady drops for a}R¯ 0.4, Ca¯ 0.05, and σ
!c
}R¯ 0.5, for L}R¯ 2, 2.5 and 3.

(b) Corresponding profiles in the plane passing through the drop centroid and the tube axis.

off-centre file of rigid cylindrical particles. It appears then that the existence of a
minimum apparent viscosity at certain periodic separations is a distinguishing feature
of the three-dimensional flow.

We mentioned that minimum apparent viscosity occurs when L}R¯ 2.5 regardless
of the initial radial position. This can be seen more clearly in figure 17(a) where we plot
the apparent viscosity caused by quasi-steady drops at Vt}R¯ 1.5, against the drop
separation, for σ

c!
}R¯ 0, 0.1, 0.25 and 0.5, corresponding to the conditions of figure

16. The error bars were determined from the volume change between the initial and
final state at Vt}R¯ 1.5. As the flow becomes increasingly more axisymmetric, the
variation of the apparent viscosity with periodic separation tends to become
monotonic. We expect that for each initial radial position, as L}R is made larger, the
apparent viscosity will asymptotically approach a value corresponding to a solitary
drop.

Further insights into the effect of separation on the apparent viscosity can be gained
be varying the drop size, while keeping the capillary number and initial position of the
file constant. In figure 17(b), we plot the apparent viscosity against the separation for
quasi-steady drops with sizes a}R¯ 0.10, 0.25, 0.33 and 0.40. As the drop radius is
increased, the variation of the apparent viscosity with separation becomes increasingly
less monotonic. Thus, increasing the separation causes the apparent viscosity of a
quasi-steady file to be reduced, provided that the drops are sufficiently small or close
to the centreline. Unfortunately, we are not aware of experimental results on the
apparent viscosity of a file with λ¯ 1 that show either the decreasing of the apparent
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F 16. Effect of drop separation on the relative apparent viscosity for a}R¯ 0.4, Ca¯ 0.05
and ——, L}R¯ 2; - - -, 2.5 ; –[–, 3; (a) σ

!c
}R¯ 0, (b) 0.1, (c) 0.25, (d ) 0.5.

viscosity with increasing periodic separation, or the occurrence of the minimal
apparent viscosity at a finite separation.

8. Discussion

We found that, after an initial adjustment period, the drops migrate toward the
centreline. When the capillary number is sufficiently low, a quasi-steady state is
established where changes in the drop shape are caused predominantly by the radial
migration. The quasi-steady shapes are affected significantly by the distance of the off-
centre arrangement from the centreline and the drop separation.

The stability of the motion of the single file of deformable drops has not been
considered. Sugihara-Seki & Skalak (1988) investigated the stability of single and dual
rows of rigid circular cylinders spaced regularly in a two-dimensional channel. Their
results showed that when the initial position is slightly perturbed from the staggered,
two-file configuration, the cylinders execute oscillatory motion around their steady
positions. In contrast, the single file and the symmetric double file are unstable.
Sugihara-Seki, Skalak & Secomb (1990) investigated the stability of a staggered
arrangement of triangular cells, and Secomb & Hsu (1993) investigated the stability of
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F 17. Effect of drop separation on the relative apparent viscosity at Vt}R¯ 1.5 for
Ca¯ 0.05, and (a) a}R¯ 0.4, (b) σ
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}R¯ 0.5.

rigid closely fitting particles, with similar findings. Red blood cells rarely arrange
themselves in perfectly regular single or double files (Gaehtgens 1980; Gaehtgens et al.
1980), and deformable liquid drops at high concentrations are likely to show similar
behaviours.

Close inspection of figure 8(a) reveals that the interfacial elements are larger in the
higher curvature regions at the rim of the dimple than at the centre. This unfortunate
distribution is due to our inability to effectively control the quality of the grid by
dynamically adjusting the velocity of the nodes comprising the vertices of the
triangular elements. To achieve the highest possible accuracy with a given number of
elements, smaller elements in the regions of higher curvature are required, but not so
small as to impose strong constraints on the size of the timestep. Zinchenko et al.
(1997) developed a grid-controlling algorithm by placing restrictions of the variations
of the inter-node distances and minimizing the rate of change of these distances. We
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are currently implementing the advancing front method described by Nakahashi &
Sharov (1995) for directly triangulating a curved surface in the physical space. This
method allows for a precise control of the triangle size and skewness by monitoring
local variations of curvature, and incorporates a facility for adaptive refinement
(Hinton, Rao & Ozakca 1991). The result is a discretization that requires a minimal
number of elements and maintains a consistently accurate representation of the
interfaces for longer evolution times.
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